Using Gaussian Mixture Models for Gesture Recognition During Haptically Guided Telemanipulation
نویسندگان
چکیده
منابع مشابه
Arm Motion Gesture Recognition using Dynamic Movement Primitives and Gaussian Mixture Models
In collaborative interaction scenarios between a human and a robot, The robot’s ability to recognize the movement gestures of a human is crucial to understanding the underlying intent. Gestures are particularly useful if there is some mapping (constant, time-varying, or task-dependent) between the gesture and the desired intention. As an effort towards recognizing movement gestures better, this...
متن کاملFuzzy Gaussian mixture models for speaker recognition
A fuzzy clustering based modification of Gaussian mixture models (GMMs) for speaker recognition is proposed. In this modification, fuzzy mixture weights are introduced by redefining the distances used in the fuzzy c-means (FCM) functionals. Their reestimation formulas are proved by minimising the FCM functionals. The experimental results show that the fuzzy GMMs can be used in speaker recogniti...
متن کاملNoise Compensation for Speech Recognition Using Subspace Gaussian Mixture Models
In this paper, we adress the problem of additive noise which degrades substantially the performances of speech recognition system. We propose a cepstral denoising based on the Subspace Gaussian Mixture Models paradigm (SGMM). The acoustic space is modeled by using a UBM-GMM. Each phoneme is modeled by a GMM derived from the UBM. The concatenation of the means of a given GMM leads to a very high...
متن کاملSkew Gaussian Mixture Models for Speaker Recognition
The current paper proposes skew Gaussian mixture models for speaker recognition and an associated algorithm for its training from experimental data. Speaker identification experiments were conducted, in which speakers were modeled using the familiar Gaussian mixture models (GMM), and the new skewGMM. Each model type was evaluated using two sets of feature vectors, the mel-frequency cepstral coe...
متن کاملImproving Speaker Recognition Performance Using Phonetically Structured Gaussian Mixture Models
Throughout the past few years it has been shown that Gaussian Mixture Models (GMM) are highly suitable for speaker identification and verification. Nevertheless these models try to represent primarily the distribution of the available training data neglecting any possible phonetic information which might be of worth. In our paper we present a recognition system using multiple speaker GMMs based...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronics
سال: 2019
ISSN: 2079-9292
DOI: 10.3390/electronics8070772